Data sketches are approximate succinct summaries of long data streams. They are widely used for processing massive amounts of data and answering statistical queries about it. Existing libraries producing sketches are very fast, but do not allow parallelism for creating sketches using multiple threads or querying them while they are being built. We present a generic approach to parallelising data sketches efficiently and allowing them to be queried in real time, while bounding the error that such parallelism introduces. Utilising relaxed semantics and the notion of strong linearisability we prove our algorithm’s correctness and analyse the error it induces in two specific sketches. Our implementation achieves high scalability while keeping the error small. We have contributed one of our concurrent sketches to the open-source data sketches library.
Mon 24 FebDisplayed time zone: Tijuana, Baja California change
14:00 - 15:40 | |||
14:00 25mTalk | Scaling Concurrent Queues by Using HTM to Profit from Failed Atomic Operations Main Conference | ||
14:25 25mTalk | A Wait-Free Universal Construct for Large Objects Main Conference | ||
14:50 25mTalk | Fast Concurrent Data Sketches Main Conference Arik Rinberg Technion, Alexander Spiegelman VMware Research, Edward Bortnikov Yahoo Research, Eshcar Hillel Yahoo Research, Oath, Idit Keidar Technion - Israel institute of technology, Hadar Serviansky Weizmann, Lee Rhodes Verizon Media | ||
15:15 25mTalk | Universal Wait-Free Memory Reclamation Main Conference |